Figure : Different frequency components
Figure : Periodogram for frequency components
Figure : Filtered result for frequency components
Therefore, the trend cycle decomposition was described as, yt=gt+ctˆgt=ˆα0+ˆα1t+ˆα2t2+…ˆct=yt−ˆgt
Figure : Linear decomposition - SA output (1960Q1-2018Q4)
Figure : HP filter - SA output (1960Q1-2018Q4)
Figure : Artificial Data
Figure : BP filter - SA output (1960Q1-2018Q4)
Figure : Evaluation of decompositions - SA output (1960Q1-2018Q4)
Figure : Leads and Lags - Correlation with GDP
Figure : Daublet (4) wavelet functions - \psi_{1,0}(t) and \psi_{2,1}(t)
Figure : Daublet (4) wavelet decomposition - South African inflation
Figure : Daublet (4) wavelet decomposition - South African inflation
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |